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In this paper, we present a new type of semi-Lagrangian scheme for advection
transportation equation. The interpolation function is based on a cubic polynomial and
is constructed under the constraints of conservation of cell-integrated average and the
slope modification. The cell-integrated average is defined via the spatial integration
of the interpolation function over a single grid cell and is advanced using a flux form.
Nonoscillatory interpolation is constructed by choosing proper approximation to the
cell-center values of the first derivative of the interpolation function, which appears
to be a free parameter in the present formulation. The resulting scheme is exactly
conservative regarding the cell average of the advected quantity and does not produce
any spurious oscillation. Oscillationless solutions to linear transportation problems
were obtained. Incorporated with an entropy-enforcing numerical flux, the presented
schemes can accurately compute shocks and sonic rarefaction waves when applied
to nonlinear problems. c© 2001 Academic Press
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1. INTRODUCTION

Semi-Lagrangian schemes, as indicated by the terminology, describe fluid evolution
based on a reference frame moving with an individual parcel of fluid like a fully Lagrangian
method but make use of an Eulerian computational grid and choose the set of the parcels at
every time step so that all the fluid parcels arrive at each grid point of the regularly spaced
Eulerian mesh at the next time step. As an efficient and accurate approach to computing
the advection process, semi-Lagrangian schemes have been extensively studied and widely
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incorporated into numerical models for atmospheric flows during the past decades. Surveys
of such a topic were given by Staniforth and Cˆoté [25] and Smolarkiewicz and Pudykiewicz
[24].

A semi-Lagrangian scheme in a one-dimensional flow field involves the numerical ma-
nipulations to solve the following differential equations for any physical variablef (x, t),

d f

dt
= G(x, t) (1)

and

dx

dt
= u(x, t), (2)

wheret refers to the time,x is the spatial coordinate,u is the flow speed, andG refers to
the source terms. Here, the total derivative is defined as

∂

∂t
+ u

∂

∂x
. (3)

A semi-Lagrangian method usually makes use of the solution as a Lagrangian invariant at
any instantt ,

f (x, t) = f (x̂, t −1t), (4)

wherex̂ denotes the departure point of a trajectory that originates att −1t and arrives at
x after1t . As mentioned above, the end pointx is chosen to coincide with a grid point, but
the departure point̂x is not in general a grid point. Thus, the following three tasks always
need to be done for any semi-Lagrangian scheme: (1) approximate the trajectory for all the
parcels which arrive at grid points, (2) construct the interpolation function forf (x, t −1t)
over the cell that covers the departure point of the trajectory, and (3) estimate the source
termsG along the trajectory during the time integration fromt −1t to t .

As discussed in [5], the back trajectory can be calculated with a second-order accuracy
using a Runge–Kutta type scheme. The estimation of the source or forcing termsG, however,
is a topic that is closely related to the physical problem to be solved, and some well-
established methods, such as the trapezoidal method and the second-order Adams–Bashforth
method, exist for practical applications. The construction of the interpolation for physical
variable f (x, t) remains the most active field for investigation since the first appearance of
the semi-Lagrangian schemes and still attracts the interest of researchers. So far emphasis has
been given to the numerical properties, such as accuracy [9, 15, 22, 33, 34], monotonicity
[2, 30, 31, 32], and locality [31, 33, 34].

Unlike most Eulerian methods, which are derived by using control volume or cell-
integrated average, the Lagrangian invariant solution used in a semi-Lagrangian scheme
is based only on spatial points and is usually cast in a nonconservation form. Because of the
intrinsic difficulties in introducing a conservation formulation in a semi-Lagrangian scheme,
few studies on the conservation of the semi-Lagrangian schemes have been reported so far
in the literature. A quasiconservative semi-Lagrangian advection scheme is proposed in
[21] where a semi-Lagrangian scheme is derived by weighting the flux-corrected transport
(FCT) method [3, 37] and a higher order interpolation. The weight is iteratively determined
so that the conservation of the total amount of the advected quantity is enforced. As the
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conservation and the positivity of the advected physical field are important or appear essen-
tial in many applications, development of a semi-Lagrangian scheme that guarantees these
properties should be worth further efforts.

A semi-Lagrangian method that conserves exactly the transported physical field has
been recently developed in [27, 35] by using the CIP (constrained interpolation profile)
concept. The word “CIP” is originally the abbreviation ofcubic interpolated propaga-
tion, a numerical scheme proposed by one of the authors for the linear scalar advection
equation [33, 34]. Sinceconstrained interpolation profileprovides a more general con-
cept that allows a larger variety or a wider spectrum of the numerical techniques to be
involved in constructing a semi-Lagrangian scheme, we adopt CIP as a phrase standing
for constrained interpolation profile. The original CIP method falls naturally into this
extended concept of CIP as a subset. The original CIP method (see [33, 34]) is con-
structed on the basis of a cubic polynomial function. The first-order spatial derivatives
of the interpolation function are assumed to follow a set of governing equations derived
by differentiating the advection equation with respect to the spatial coordinates. These
derivatives, according to the current interpretation of CIP, give constraints on the interpo-
lation function. This scheme is completely different from conventional semi-Lagrangian
methods regarding the computation of derivatives. In the latter methods, the gradient is
calculated based on the function values at neighboring grid points either by assuming the
continuity of the quantity, the first and sometimes the second-order derivatives of the quan-
tity at the mesh boundaries [22], or by using approximations based on local grid points
[30]. By a special treatment of the first derivatives of the interpolation function, the CIP
method achieves a compact form that uses only one mesh cell to construct the interpolation
profile.

Interpreting CIP asconstrained interpolation profileimplies that any physically or nu-
merically meaningful treatment can be applied in developing a scheme. Accordingly, the
interpolations forf (x, t) can be constructed under some desired constraints to make the
resulting scheme possess certain qualities. In [27] and [35], a constraint of the conserva-
tion relation for cell-integrated average is imposed at the stage to determine the piecewise
interpolation functions. The resulting schemes, namely, CIP–CSL4 (constrained interpola-
tion profile–conservative semi-Lagrangian scheme with fourth-order polynomial function)
and CIP–CSL2 (constrained interpolation profile–conservative semi-Lagrangian scheme
with second-order polynomial function), conserve exactly the cell-integrated average of the
transported field.

In this paper, we propose another class of schemes called CIP–CSL3 (constrained interpo-
lation profile–conservative semi-Lagrangian scheme with third-order polynomial function)
using the CIP concept. The CIP–CSL3 schemes are constructed from a cubic polynomial.
In addition to the conservation constraint used in the CIP–CSL2 and CIP–CSL4, the slope
(first-order derivative) of the interpolation function at the middle point of a mesh cell is also
introduced as another constraint on the interpolation function. The slope at the cell center
can be easily approximated from a reconstruction procedure, and this allows manipulations,
i.e., slope limiters, to make the interpolation oscillationless.

In Section 2, the fundamental CIP–CSL3 formulation is described, and some practical
schemes are obtained by choosing different formulas for computing the slope. Numerical
results for both the linear scalar advection equation and the Burgers equation are given in
Section 3. Implementation with large CFL number is described in Section 4, and the paper
ends with some concluding remarks in Section 5.
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2. THE CIP–CSL3 SCHEMES

The model equation to be considered is a transportation equation in one dimension,

∂ f

∂t
+ ∂

∂x
(u f ) = 0, (5)

wheret refers to the time,x is the spatial coordinate,u is the characteristic speed, andf is
the transported quantity.

The above equation in fact states a conservation law off (x, t) and can be recast into an
integral form over any space–time control volume [x, x +1x] × [t, t +1t ] as∫ x+1x

x
f (x1, t +1t) dx1−

∫ x+1x

x
f (x1, t) dx1

= −
[∫ t+1t

t
f (x +1x, t1)u(x +1x, t1) dt1−

∫ t+1t

t
f (x, t1)u(x, t1) dt1

]
. (6)

It is convenient to make use of the conservation form of (5) or (6) in constructing a
finite-difference or finite-volume method via an Eulerian representation, and the result-
ing numerical formulation is in general automatically conservative. However, in applying
a semi-Lagrangian calculation, Eq. (5) has to be written in a form as (1)

d f

dt
= − f

∂u

∂x
. (7)

The only forcing term in this case is the divergence of the velocity field, and the semi-
Lagrangian calculation is in general divided into a two-step procedure as

f̃ (x, t) = f (x − u1t, t −1t) (8)

and

f (x, t) = f̃ (x, t)−1t f̃ (x, t)
∂u

∂x
. (9)

It is obvious that this solution procedure does not necessarily guarantee the conservation of
the advected quantityf as stated in (5) and (6). Nevertheless, an alternative way to enforce
the conservation of a scheme in semi-Lagrangian form, can be devised by employing the
conservation law as a constraining condition to the interpolation function.

We start from the given dataf (x1), f (x2), . . . f (xi ) . . . f (xN) with x1 < x2 < · · · <
xi < · · · < xN , which denote the numerical solution of Eq. (5),{ f n

i }, over the computational
domain atn time steps (t = tn), and make use of a piecewise cubic polynomial function, as
in the original CIP method [33].

As with any other semi-Lagrangian schemes, the scheme we will discuss in this paper can
bear a large time step only if one tracks back, according to the trajectory, to the corresponding
departure point and constructs the interpolation profile over the mesh cell covering the
departure point (see Section 4). For the sake of simplicity and without losing generality, the
following discussions will be based on the neighboring cell of the grid point of interest.

Thei th piece of the interpolation function is constructed over upwind stencils. Left-bias
and right-bias components are then written as

F L
i (x) = f (xi )+ cL

1i (x − xi )+ cL
2i (x − xi )

2+ cL
3i (x − xi )

3, for x ∈ [xi−1, xi ] (10)
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and

F R
i (x) = f (xi )+ cR

1i (x − xi )+ cR
2i (x − xi )

2+ cR
3i (x − xi )

3, for x ∈ [xi , xi+1]. (11)

We consider a construction over the left-side stencils of gridi with xi−1 ≤ x ≤ xi and
define the left-side interpolation function as that in (10). It implies the case ofu ≥ 0. From
the continuity ofF L

i (x) at the two ends of the cell, we have

F L
i (xi ) = f n(xi ) (12)

and

F L
i (xi−1) = f n(xi−1). (13)

As in the CIP–CSL2 method, a constraint for the conservation of cell-integrated average is
imposed as ∫ xi

xi−1

F L
i (x) dx = ρn

i− 1
2
. (14)

Another constrained condition for the interpolation construction is imposed on the first-
order derivative ofF L

i (x), d FL
i (x)/dx, at the middle point of the cell,

d FL
i (x)

dx
= dn

i− 1
2
. (15)

In terms of f n
i , f n

i−1, d
n
i−1/2, andρn

i−1/2, the polynomial (10) can be completely determined
from (12)–(14), and the coefficients read

cL
1i = − 6

1x2

i− 1
2

ρn
i− 1

2
− 6

1x
i− 1

2

f n
i − 2dn

i− 1
2
,

cL
2i = − 6

1x3

i− 1
2

ρn
i− 1

2
+ 3

1x2

i− 1
2

(
3 f n

i − f n
i−1

)− 6
1x

i− 1
2

dn
i− 1

2
,

cL
3i = 4

1x3

i− 1
2

(
f n
i − f n

i−1

)− 4
1x2

i− 1
2

dn
i− 1

2
,

(16)

where1xi−1/2 = xi − xi−1.
Analogously, the coefficients for the right-bias interpolation functionF R

i (x) read

cR
1i = 6

1x2

i+ 1
2

ρn
i+ 1

2
− 6

1x
i− 1

2

f n
i − 2dn

i+ 1
2
,

cR
2i = − 6

1x3

i+ 1
2

ρn
i+ 1

2
+ 3

1x2

i+ 1
2

(
3 f n

i − f n
i+1

)+ 6
1x

i+ 1
2

dn
i+ 1

2
,

cR
3i = − 4

1x3

i+ 1
2

(
f n
i − f n

i+1

)− 4
1x2

i+ 1
2

dn
i+ 1

2
.

(17)

Once the interpolation function is determined, the numerical solution off at time step
n+ 1 is updated as

f̃ i =
{

F L
i (xi − u1t), if u > 0,

F R
i (xi − u1t), if u < 0,

(18)
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and

f n+1
i = f̃ i − 1t

1xi− 1
2
+1xi+ 1

2

f̃ i (ui+1− ui−1). (19)

Following [27, 35], the cell-integrated averageρ is advanced by the conservative relation

ρn+1
i− 1

2
= ρn

i− 1
2
− (gi − gi−1), (20)

wheregi represents the flux ofρ across boundaryx = xi duringtn+1− tn and is computed as

gi =
∫ tn+1

tn

[
min(0, u)F R

i (xi − u(t − tn))+max(0, u)F L
i (xi − u(t − tn))

]
dt. (21)

Assuming that velocityu remains constant during time intervaltn+1− tn = 1t yields

gi = −min(0, ξ)

(
f n
i +

1

2
cR

1i ξ +
1

3
cR

2i ξ
2+ 1

4
cR

3i ξ
3

)
−max(0, ξ)

(
f n
i +

1

2
cL

1i ξ +
1

3
cL

2i ξ
2+ 1

4
cL

3i ξ
3

)
, (22)

whereξ = −ui1t .
The slope of the interpolation function at the cell centerdn

i−1/2 remains a free parameter
to be determined. It is this parameter that provides us a way to modify the interpolation
function for suppressing numerical oscillation. To make the resulting scheme more local,
we constructdn

i−1/2 using the cell center valuesf n
1/2, f n

3/2, · · · f n
i−1/2 · · ·.

The value of the interpolation function at the cell-central pointx = xi−1/2 can be found
immediately from (10) as

f n
i− 1

2
= 3

21xi− 1
2

ρn
i− 1

2
− 1

4

(
f n
i + f n

i−1

)
. (23)

There are many choices for evaluatingdn
i−1/2. The well-known approximations for first-

order derivatives, such as those proposed in [1], [6], or [10], can be the candidates in some
practical situations. In the present paper, we will define and discuss several CIP–CSL3 type
schemes by choosing different approximations todn

i−1/2.

2.1. The CIP–CSL3HYMAN Scheme

Using the approximation proposed by Hyman [10], we computedn
i−1/2 as

dn
i− 1

2
=
− f n

i+ 3
2
+ 8 f n

i+ 1
2
− 8 f n

i− 3
2
+ f n

i− 5
2

−1xi+1+ 71xi + 71xi−1−1xi−2
, (24)

where1xi = 1
21xi+1/2+ 1

21xi−1/2.
The resulting scheme is called the CIP–CSL3HYMAN scheme. The Hyman approx-

imation has fourth-order accuracy for a smooth solution but will cause computationally
spurious oscillation in the presence of a discontinuity or large gradient.

The Hyman approximation is not an oscillation-suppressing formulation. We include it in
the present paper to illustrate that the choice of an approximation todn

i−1/2 essentially affects
the interpolation profile and the numerical solution. As with the following two candidates
for computingdn

i−1/2, an oscillationless solution can be obtained by choosing proper slope
limiters fordn

i−1/2.
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2.2. The CIP–CSL3UNO Scheme

We call a scheme CIP–CSL3UNO if a UNO reconstruction is used to evaluate the
derivativedn

i−1/2.
From [8], a UNO construction fordn

i−1/2 can be written as

dn
i− 1

2
= minmod

(
S+

i− 1
2
, S−

i− 1
2

)
, (25)

where the minimum modulus function is defined as

minmod(a, b) =
{

m(a, b), if a andb have same sign,

0, if a andb have opposite signs,
(26)

and

m(a, b) =
{

a, if |a| ≤ |b|,
b, otherwise.

(27)

The piecewise-quadratic reconstruction functions are defined as

S+
i− 1

2
= f

[
xi− 1

2
, xi+ 1

2

]−1xi minmod
(

f
[
xi− 3

2
, xi− 1

2
, xi+ 1

2

]
, f
[
xi− 1

2
, xi+ 1

2
, xi+ 3

2

])
(28)

and

S−
i− 1

2
= f

[
xi− 3

2
, xi− 1

2

]−1xi−1minmod
(

f
[
xi− 5

2
, xi− 3

2
, xi− 1

2

]
, f
[
xi− 3

2
, xi− 1

2
, xi+ 1

2

])
.

(29)

The first and second Newton-divided differences are defined as

f
[
xi− 1

2
, xi+ 1

2

] = f n
i+ 1

2
− f n

i− 1
2

1xi
(30)

and

f
[
xi− 1

2
, xi+ 1

2
, xi+ 3

2

] = 1

1xi+1+1xi

(
f n
i+ 3

2
− f n

i+ 1
2

1xi+1
−

f n
i+ 1

2
− f n

i− 1
2

1xi

)
. (31)

The UNO reconstruction procedure selects a line over [xi−1, xi ] that is bounded by

fi− 1
2
+ f

[
xi− 1

2
, xi+ 1

2

](
x − xi− 1

2

)
(32)

and

fi− 1
2
+ f

[
xi− 3

2
, xi− 1

2

](
x − xi− 1

2

)
. (33)

The UNO reconstruction [8] has a uniform second-order accuracy and appears less oscilla-
tory in the presence of discontinuity.

Instead of the averaging in the UNO reconstruction, essentially nonoscillatory (ENO)
reconstruction [7] can also be applied by carefully choosing a single piecewise-quadratic
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interpolation which should be the one closest to the line which lies between (32) and
(33). Furthermore, more generalized reconstructions using averaging techniques, such as
weighted ENO (WENO), can be devised by combining the candidate polynomial interpo-
lations (see Liu,et al. [14] and Jiang and Shu [11]).

2.3. The CIP–CSL3CW Scheme

In this scheme we adopt the approximation suggested by Collela and Woodward [4] as

dn
i− 1

2
=


min
(∣∣δ f n

i− 1
2

∣∣, 2∣∣ f n
i+ 1

2
− f n

i− 1
2

∣∣, 2∣∣ f n
i− 1

2
− f n

i− 3
2

∣∣)sgn
(
δ f n

i− 1
2

)/
1xi− 1

2
,

if
(

f n
i+ 1

2
− f n

i− 1
2

)(
f n
i− 1

2
− f n

i− 3
2

)
> 0;

0, otherwise.

(34)

The average slopeδ f n
i− 1

2
is given by

δ f n
i− 1

2
=

1xi− 1
2

1xi− 3
2
+1xi− 1

2
+1xi+ 1

2

(21xi− 3
2
+1xi− 1

2

1xi− 1
2
+1xi+ 1

2

(
f n
i+ 1

2
− f n

i− 1
2

)
+
1xi− 1

2
+ 21xi+ 1

2

1xi− 3
2
+1xi− 1

2

(
f n
i− 1

2
− f n

i− 3
2

))
. (35)

This reconstruction, referred to as CW reconstruction hereafter, is a third-order-accurate
approximation in smooth regions. As we will show later, the modified slope computed from
(34) is able to effectively avoid oscillations in the presence of jump discontinuities, but it
tends to flatten a peak and create a plateau in the area whereδ f n

i−1/2 changes sign.

2.4. Outline of the Computational Procedure

As discussed in the previous sections, a CIP–CSL3 type scheme can be coded via the
following steps:

• Construct the interpolation function:
(i) computedn

i−1/2 from { f n
i−1/2} using a slope approximation, i.e., any of (24), (25),

(34), or others and
(ii) determine the cubic polynomial (10) or (11) in terms off n

i , f n
i−1, d

n
i−1/2, andρn

i−1/2

by (16) or (17).
• Advance the solution:

(i) calculate the semi-Lagrangian solution off by (18),
(ii) correct f according to velocity divergence via (19), and
(iii) predict the cell-integrated averageρ using the exactly conservative formula-

tion (20).

Before closing this section, we want to remark on a few apparent differences between our
methods and other schemes which also use interpolation constructions, such as the MUSCL
scheme [28, 29] and the piecewise parabolic method (PPM) [4]. In these other schemes, a
linear (MUSCL) or a parabolic (PPM) function is used to construct the interpolation function
which is then used to evaluate the numerical flux with second- or third-order accuracy. All
the construction procedures start from the cell-average values. The values of the dependent
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variable at cell interfaces are computed from the neighboring cell averages and modified
to enforce the monotonicity. In addition to a slope modification, the modification of the
values at cell interfaces proves essential to get an oscillationless solution; otherwise the
dispersion errors of the numerical solution will be significant. The constructed piecewise
interpolation functions are in general not connected across cell interfaces. In our schemes,
the values at the cell interfaces (the grid points in our terminology) are computed based on
a semi-Lagrangian approach and no modification is involved. Using the semi-Lagrangian
solution makes the dispersion errors less and more local. This can be easily understood if one
consults the numerical results of the CSL2 scheme (see Section 3) where no modification
was done to either slope or cell-interface values. In the CSL3UNO and the CSL3CW, only
the slope at the cell center was modified. Thus the pieces of the interpolation functions are
connected and make a profile with a smoothness of at leastC0.

3. NUMERICAL TESTS

The numerical schemes proposed in Section 2 were tested on both linear and nonlinear
scalar transportation problems. Test problems were chosen to illustrate the numerical prop-
erties of the presented schemes, such as phase and amplitude errors, mass conservation,
oscillatory errors across discontinuities, smearing and dispersion of contact discontinuities,
capacities of capturing shocks, and expansion fans. We included the CIP–CSL2 [35] scheme
as well for comparison.

In all the calculations presented in this paper, an evenly spaced mesh with1x = 0.01
and a fixed increment for time integration1t = 0.002 are used.

3.1. Linear Scalar Transportation

We consider one-dimensional linear initial problems as

∂ f

∂t
+ ∂

∂x
(u f ) = 0, (t, x) ∈ [0,∞)× (−∞,+∞) (36)

with different initial conditions

f (x, 0) = f 0(x), x ∈ (−∞,+∞).

3.1.1. Test 1. To examine phase and amplitude errors, a sine function

f 0(x) = sin(5πx) (37)

was used as the initial profile. A constant velocityu = 1.0 was set throughout the compu-
tational domain.

As displayed in Fig. 1, all tested schemes recovered the exact solution perfectly except
the CIP–CSL3CW which flattens the ridge of the wave due to the slope limiter. The PPM
[4] which uses the same slope limiter produces a similar solution with flattened peaks. The
results from the other three schemes are visually identical. Since all schemes have higher
than second-order accuracy, the amplitude of the smooth solution is well preserved. As a
type of semi-Lagrangian method, the phase errors are completely eliminated by using the
Lagrangian invariant solution of the linear advection equation.
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FIG. 1. A transported sine wave after 1000 step calculations with the CIP–CSL2 scheme (a), the CIP-
CSL3 HYMAN scheme (b), the CIP–CSL3UNO scheme (c), and the CIP–CSL3CW scheme (d).

Resolution refinement tests were carried out using a sine function with wavelengths of
101x, 201x, and 401x.

Following Takacs [26] and Bermejo and Staniforth [2], a measure of the total error based
on al2 norm is given as

El2 =
1

N

N∑
i=1

(
f n
i − f exact

i

)2
, (38)

whereN is the total number of grid points.
The numerical errors are given in Table I. We included the results of the PPM as well for

comparison. The CIP–CSL3HYMAN produces the best solutions for all wavelengths. The
PPM shows an accuracy between CIP–CSL3UNO and CIP–CSL3CW. The convergence
rates of the schemes were also evaluated and shown in Table II. The rates for all the tested
schemes show a decline in the long-wave regime, where the sine wave is well represented
by the schemes. Especially, CIP–CSL2 and CIP–CSL3HYMAN show a significantly sat-
urated convergence for the smooth solution of long waves. CIP–CSL3UNO has the best
convergence rate for all the wavelengths. The PPM clips the sharp peaks and gives the
lowest convergence rate in the short-wave regime.
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TABLE I

Grid Refinement Tests of Different Schemes

Wavelength 101x 201x 401x

CSL2 1.26× 10−2 1.44× 10−4 3.46× 10−6

CSL3 HYMAN 2 .73× 10−3 3.95× 10−5 2.15× 10−6

CSL3 UNO 1.02× 10−1 9.32× 10−4 9.42× 10−6

CSL3 CW 2.97× 10−1 7.51× 10−3 2.84× 10−4

PPM 1.87× 10−1 5.37× 10−3 1.76× 10−4

Note.A sine wave with different wavelengths was computed. Displayed
are the errors defined byEl2 = 1

N

∑
N
i=1( f n

i − f exact
i )2.

3.1.2. Test 2. This problem is the transportation of a square wave. The conditions are
the same as in the previous example except that the initial profile is defined as

f 0(x) =
{

1, |x| ≤ 0.15,

0, otherwise.
(39)

The computed results of the CIP–CSL2, CIP–CSL3HYMAN, CIP–CSL3 UNO, and
CIP–CSL3CW att = 2 are plotted in Fig. 2. As expected, without a smoothing constraint,
the CSL2 and the CIP–CSL3HYMAN methods produced significant spurious undershoots
and overshoots near the large gradients. The profile from the CIP–CSL3HYMAN method
looks somewhat similar to that of the CSL2, but it has steeper jumps at the discontinuities
because of the use of a higher order interpolation function. Constrained by the oscillation-
suppressing reconstructions, i.e., the UNO and the CW reconstructions, CIP–CSL3UNO
and CIP–CSL3CW give well-regulated results. The profiles are effectively bounded. Com-
pared with the CIP–CSL3UNO, the CIP–CSL3CW seems to be able to reinforce the initial
sharpness.

Further examinations on the conservation qualities, numerical oscillations, and overall
computational errors of the presented schemes can be carried out with the aid of Table III.
To compare the performances of the schemes in mass conservation and the numerical
oscillation, we calculated the rates of the first and the second moments of the numerical
solution at instantt against the initial values defined as RFM= ∫ f (t)/

∫
f (0) and RSM=∫

f 2(t)/
∫

f 2(0). The maximum and the minimum of the computed values are inspected
as well.

TABLE II

Convergence Rates of Different Schemes

Wavelength [El2(101x)/El2(201x)]1/2 [El2(201x)/El2(401x)]1/2

CSL2 9.35 6.45
CSL3 HYMAN 8.31 4.29
CSL3 UNO 10.46 9.95
CSL3 CW 6.29 5.14
PPM 5.9 5.52
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FIG. 2. Same as Fig. 1, but a square wave.

All the tested schemes conserve exactly the first moment. The second moment appears to
have a larger loss with a more diffusive solution. Consistent with what is observed in Fig. 2,
the CIP–CSL3UNO and CIP–CSL3CW completely avoid the numerical undershoot and
overshoot, while the CIP–CSL2 and CIP–CSL3HYMAN do not. The slope limiters used
in UNO or in Collela and Woodward’s reconstructions effectively suppress the spurious
oscillation. With the most significant oscillatory errors, the CIP–CSL3HYMAN shows the
least diffused solution and appears superior in terms of the total errors. In this particular case,

TABLE III

Numerical Properties of Different Schemes on the Square Wave

Transportation Problem

Scheme RFM RSM MAX min El2

CSL2 1.0 0.979 1.053 −0.053 1.758× 10−3

CSL3 HYMAN 1 .0 0.986 1.068 −0.068 1.558× 10−3

CSL3 UNO 1.0 0.916 1.0 0.0 2.791× 10−3

CSL3 CW 1.0 0.941 1.0 0.0 2.435× 10−3

Note. MAX and min indicate the highest and the lowest values produced
by the schemes. Other quantities are defined asEl2 = 1

N

∑
N
i=1( f n

i − f exact
i )2,

RFM= ∫ f (t)/
∫

f (0), and RSM= ∫ f 2(t)/
∫

f 2(0).
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FIG. 3. Same as Fig. 1, but a triangular wave.

the CIP–CSL3CW gives a good compromise between smearing the contact discontinuity
and eliminating numerical oscillation.

3.1.3. Test 3. The transportation of a triangle wave, initially given as

f 0(x) =
{

1− |x|
0.15, |x| ≤ 0.15,

0, otherwise
(40)

is computed in this case. The results att = 2 are given in Fig. 3 and Table IV. Again, all
schemes conserve the total transported mass. As can be expected, the CIP–CSL2 and the
CIP–CSL3HYMAN produce numerical undershoots but better preserve the sharp peak,
while the CIP–CSLUNO and the CIP–CSL3CW result in a somewhat more smeared peak.

TABLE IV

Same as Table I, but for the Triangle Wave Transportation Problem

Scheme RFM RSM MAX min El2

CSL2 1.0 0.997 0.940 −0.008 1.770× 10−5

CSL3 HYMAN 1 .0 0.999 0.950 −0.007 1.278× 10−5

CSL3 UNO 1.0 0.984 0.912 0.0 5.792× 10−5

CSL3 CW 1.0 0.987 0.869 0.0 9.844× 10−5
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TABLE V

Transportation of a Square Wave with a Variable Velocity Field

Scheme RFM RSM MAX min El2

CSL2 1.0 0.572 0.825 −0.054 1.672× 10−3

CSL3 HYMAN 1 .0 0.578 0.857 −0.065 1.614× 10−3

CSL3 UNO 1.0 0.532 0.759 0.0 2.568× 10−3

CSL3 CW 1.0 0.544 0.781 0.0 2.413× 10−3

It is also observed that the CIP–CSL3CW scheme causes the worst clip to the triangular
peak, because the CW reconstruction tends to enforce the jump transition between two
plateaus and a sharp corner is then always subjected to being flattened.

3.1.4. Test 4. A variable velocity field

u(x) = 1

1+ 0.5 sin(8πx)

was used to test the conservations of the numerical schemes with a non-divergence-free
velocity. A square wave

f 0(x) =
{

1, 0.1≤ x ≤ 0.13,

0, otherwise

is transported through the computational domain untilt = 1.7. As shown in [23], an ana-
lytical solution to this problem can be found by solvingd f

f = du
u along the characteristic

curves. From Table V, we found that the total mass was exactly conserved even with the
drastically changed velocity field. The CIP–CSL3UNO and CIP–CSL3CW give positive
solutions. Also in Fig. 4, the solutions from CIP–CSL3UNO and CIP–CSL3CW appear
much less oscillatory, although new extrema are physically permitted in this case because
of the variable velocity. CIP–CSL3HYMAN has the smallestl2 errors but gives the most
oscillatory solution.

3.2. Burgers’ Equation

As discussed by Bermejo and Staniforth [2], because a conventional semi-Lagrangian
scheme is a kind of method of characteristics, it fails in recognizing uniquely the character-
istic curves which pass through a shock. A shock-fitting technique was then suggested to
isolate the shock from the smooth region where a unique characteristic curve is attainable.
However, a shock-fitting method proves to be difficult to apply to more complicated or
multidimensional physical problems [19, 21].

It is currently well accepted that, instead of fitting a shock, capturing a shock using
a conservative scheme is a more practical approach, since a local conservation, which is
automatically satisfied if a piecewise flux form is used, guarantees the right shock placement
[12].

We will show with the inviscid Burgers equation that the presented schemes, in spite of
being of semi-Lagrangian type, are capable of correctly capturing shocks with the conser-
vative constraint.
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FIG. 4. Transportation of an initial square wave with a variable velocity field. Displayed are the results after
2000 step calculations with the CIP–CSL2 scheme (a), the CIP–CSL3HYMAN scheme (b), the CIP–CSL3UNO
scheme (c), and the CIP–CSL3CW scheme (d).

As a nonlinear transportation problem, the Burgers equation allows solutions such as the
shock and the expansion fan. Being developed for a scalar conservation law, the presented
schemes can be straightforwardly applied to the Burgers equation. We consider the inviscid
Burgers equation

∂u

∂t
+ ∂H(u)

∂x
= 0, (41)

whereH(u) = 1
2u2 is the flux function.

To implement a semi-Lagrangian calculation, its advection form can be written as

∂u

∂t
+ a(u)

∂u

∂x
= 0. (42)

There are many ways to determine the characteristic speeda(u). Since semi-Lagrangian
methods are based on a quasilinear solution procedure, accurately estimating the advection
speed and the trajectory is not easy in a nonlinear case. In the present study, the advection
velocity is defined asa(u) = ∂H(u)/∂u. We use the values ofu at cell centers to approxi-
mate∂H(u)/∂u. From (23), interpolation function readily provides the middle-point values.
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Using a central difference, we have

(∂H(u)/∂u)i =
H
(
ui+ 1

2

)− H
(
ui− 1

2

)
ui+ 1

2
− ui− 1

2

. (43)

Instead of using a two-step procedure, such as (8) and (9), the divergence correction is
absorbed into the advection phase andu is solved by

un+1(x, t) = un(x − a(un)1t, t −1t). (44)

After un+1 is obtained, a flux modification similar to that suggested in [20] is adopted as

gi =
{ 1

2 minun+1≤u≤un g(u)i , if ui+ 1
2
> ui− 1

2

1
2 maxun+1≥u≥un g(u)i , if ui+ 1

2
< ui− 1

2
,

(45)

where

g(u)i = −min[0, (ut)]

[
f n
i +

1

2
cR

1i (ut)+ 1

3
cR

2i (ut)2+ 1

4
cR

3i (ut)3
]

−max[0, (ut)]

[
f n
i +

1

2
cL

1i (ut)+ 1

3
cL

2i (ut)2+ 1

4
cL

3i (ut)3
]
. (46)

Using (45), the cell-integrated averageρn+1 is predicted from (20).

Remark. In a conventional high-resolution scheme, subgrid resolution is obtained
through a reconstruction using cell-averaged values. The physical variable and the nu-
merical flux are allowed to be discontinuous across a cell boundary, usually denoted byuL

anduR. Hence any such constructed scheme appears to be able to readily use the numerical
flux to get an entropy-consistent solution as discussed in [20]. The methods presented in
this paper, however, have continuous reconstruction profiles at cell boundaries. Thus, any
numerically entropy-consistent flux that is based on a Riemann problem cannot be directly
implemented in our cases. Alternatively, since the dependent variableu is computed sep-
arately from the cell-integrated averageρ, we are provided with a possibility to evaluate
the numerical flux by using the values of the dependent variableu at two different instants.
Recalling thatu is advanced via a Lagrangian invariant solution according to the character-
istics, it is easy to understand that (45) functions equivalently as the formula discussed in
[20].

3.2.1. Test 5. We repeated the sample problem calculated in [2, 21]. The initial profile
is

u0(x) = 1

4
+ 1

2
sin(πx). (47)

The results att = 1.5 from all presented schemes are plotted in Fig. 5.t = 1.5 is an instant
far beyond the time required for the initially smooth profile to develop into a discontinuous
shock. We found that all the schemes reproduced the correct shock position. Solutions from
all schemes look quite similar except that some minor oscillations are observed behind
the shocks from the CSL3HYMAN scheme. We may attribute this to the interpolation
function used in the reconstruction. The other two with UNO and CW reconstructions give
oscillationless solutions.
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FIG. 5. Shock solution of Burger’s equation att = 1.5 from an initial sine wave (47). The arrows indicate
the accurate shock position. Displayed are the results computed by the CIP–CSL3HYMAN scheme (a), the
CIP–CSL3UNO scheme (b), and the CIP–CSL3CW scheme (c).

3.2.2. Test 6. This example was used in [36] to test numerical schemes with shocks and
sonic rarefaction wave. The initial profile is specified as a parabolic profile,

u0(x − 2.5) =
{

max[0, (x − 2.5)(1.5− x)], x − 2.5≥ 0,

−u0(x − 2.5), x − 2.5< 0.
(48)

The profile will create a left-moving shock and a right-moving shock, and an expansion
region will develop between them. Figure 6 shows the outputs att = 2 andt = 12. The
numerical flux defined in (45) and (46) works extremely well with the shocks and the sonic
rarefaction wave. Some ripples in the solution of CSL3HYMAN immediately after the
formation of the shock (t = 2) are observed, whereas CSL3UNO and CSL3CW give
excellent results.
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FIG. 6. Solution of the Burgers equation from an initial parabolic profile (48). Displayed are the results
computed by the CIP–CSL3HYMAN scheme (a), the CIP–CSL3UNO scheme (b), and the CIP–CSL3CW
scheme (c).

3.2.3. Test 7. A more complicated initial condition (the same as that used in [36]) is
specified as

u0(x) =


1.0, 2.0> x > 0.2,
−0.5, 3.0> x > 2.0,
−1.0, 4.8> x > 3.0,
0.0, otherwise.

(49)
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A right-moving shock and a left-moving shock are initially located atx = 2 andx = 3,
respectively. Two expansion discontinuities are located atx = 0.2 andx = 4.8. The exact
piecewise solution is

u(x, t) =



0.0, −∞ < x < 0.2,
(x − 0.2)/t, 0.2< x < t + 0.2,
1.0, t + 0.2< x < 2+ 0.25t,
−0.5, 2+ 0.25t < x < 3− 0.75t,
−1.0, <3− 0.75t < x < 4.8− t,
(x − 4.8)/t, 4.8− t < x < 4.8,
0.0, 4.8< x < +∞

(50)

for t < 1.0 and

u(x, t) =



0.0, −∞ < x < 0.2,
(x − 0.2)/t, 0.2< x < t + 0.2,
1.0, t + 0.2< x < 2+ 0.25t,
−1.0, <3− 0.75t < x < 4.8− t,
(x − 4.8)/t, 4.8− t < x < 4.8,
0.0, 4.8< x < +∞

(51)

for t > 1.0.
The two shocks moving in opposite directions collide att = 1.0 and a stagnant shock

forms. The two expansion fans expand at faster speeds after the respective shocks.
Figure 7 shows the computed results of the three CSL3-type schemes before the collision

(t = 0.75). The correct positions of the two shocks are obtained. The expansion waves are
also accurately computed. The CIP–CSL3HYMAN produces significant overshoots and
undershoots near the shocks as can be expected. CIP–CSL3UNO and CIP–CSL3CW give
little to be distinguished from each other and produce exceptionally good results. More
detailed observations can be obtained from Table VI. All schemes again demonstrate the
exact conservation of the first moment. A small amount of overshoot (less than 0.6%) is
observed just behind the right-moving shock wave for CIP–CSL3UNO and CIP–CSL3CW
and is less than that of CIP–CSL3HYMAN by at least one order. No undershoot is found for
CIP–CSL3UNO and CIP–CSL3CW. The CIP–CSL3HYMAN appears more oscillatory
but has lessl2 error.

Calculations were continued untilt = 2.0. The two moving shocks had collided and a
single stagnant shock established. Again all the schemes compute correctly the shock and
the expansion fans as displayed in Fig. 8.

TABLE VI

Numerical Properties of Different Schemes Applied

to the Burgers Equation (Test 7 att = 0.75)

Scheme RFM RSM MAX min El2

CSL3 HYMAN 1 .0 0.895 1.083 −1.053 1.207× 10−3

CSL3 UNO 1.0 0.895 1.006 −1.0 1.765× 10−3

CSL3 CW 1.0 0.895 1.005 −1.0 1.759× 10−3

Note.The displayed quantities are the same as those in Table I.
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FIG. 7. Solution of the Burgers equation att = 0.75 with an initial condition defined by (49). Displayed
are the results computed by the CIP–CSL3HYMAN scheme (a), the CIP–CSL3UNO scheme (b), and the
CIP–CSL3CW scheme (c).

4. IMPLEMENTATION WITH LARGE CFL NUMBER

Since the presented schemes are substantially of semi-Lagrangian type, extending the
schemes to the large CFL number case is straightforward. As with any other semi-Lagrangian
method, the departure points need to be determined as the first step. Accurately estimating
the departure point proves important especially when a large time increment is used for
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FIG. 8. Same as Fig. 7, but att = 2.0.

integration. For a problem where velocities change with time, an iteration procedure is
usually involved to determine the departure position [16, 17], and this leads to high com-
putational overhead. In the following calculations, using a velocity that remains constant,
we evaluate the departure point by a Taylor expansion up to fourth order in the space [18],

xp(i ) = xi − u1t + 1

2
1t2u

∂u

∂x
− 1

6
1t3u

∂

∂x

(
u
∂u

∂x

)
+ O(1t4). (52)
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The departure pointxp(i )may be located at a distance of more than one grid spacing away
from the arrival pointxi in case of large CFL number. Supposexp(i ) falls in between grid
pointsi p(i ) andi p(i )− 1 for xp(i ) ≤ xi , or betweeni p(i ) andi p(i )+ 1 for xp(i ) > xi .
Then the interpolation construction presented in Section 2 can be used by replacingi with
i p(i ). The advected quantityf is then advanced by

f̃ i =
{

F L
ip(i )(xp(i )− xip(i )), if xp(i ) < xi ,

F R
ip(i )(xp(i )− xip(i )), if xp(i ) > xi ,

(53)

and

f n+1
i = f̃ i − f̃ i1t

(
∂u

∂x

)xp(i ),xi

, (54)

whereF L
ip(i ) andF R

ip(i ) represent the interpolation functions over cells [i p(i )− 1, i p(i )] and

[i p(i ), i p(i )+ 1], respectively. The notation( )
xp(i ),xi stands for the averaging along the

trajectoryxp(i ), xi . A simple formulation can be written as

(
∂u

∂x

)xp(i ),xi

= 1

2

ui+1− ui−1

1xi−1/2+1xi+1/2
+ 1

2

uip(i )+1− uip(i )−1

1xip(i )−1/2+1xip(i )+1/2
. (55)

As discussed in a previous paper [35], the cell-integrated averageρi−1/2 can be advanced
by mapping the corresponding quantity in the region betweenxp(i ) andxp(i − 1) as

ρn+1
i−1/2 = gip(i−1) +

i p(i )∑
j=i p(i−1)+1

ρn
j−1/2− gip(i ). (56)

We should note that the semi-Lagrangian feature of our schemes removes the restriction
on the time step resulting from the computational stability; however, a large CFL number
tends to cause significant numerical errors when velocity violently changes. Furthermore,
a criteria for stability in terms of Lipschitz number as discussed in [13, 24] applies to the
schemes presented.

The schemes were tested with the following linear transportation problem with a strongly
divergent wind defined by

u(x) = −1.0 sign[sin(2πx)](| sin(2πx)|)1/8. (57)

The velocity, as shown in Fig. 9, has the largest divergence associated with a steep
gradient around the domain center (x = 1). The transported quantity will thus spread out
from the central area and concentrate at the two ends.

The schemes were used with different CFL numbers. The oscillation-suppressing
schemes, CIP–CSL3UNO and CIP–CSL3CW, give quite similar solutions without any
undershoot. The solutions computed by the CIP–CSL3UNO with the CFL numbers 0.2,
1.1, and 2.2, respectively, are displayed in Fig. 10. Again the conservation of the total inte-
grated cell average is retained in all the cases. The scheme is stable even with a CFL number
up to 2.2 for this sample problem. The numerical results of large CFL computations appear
not much different from those of small time step.
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FIG. 9. A test problem with strongly divergent velocity field. Displayed are the velocity defined by Eq. (57)
and the initial distribution of the advected quantity.

FIG. 10. Advection on a divergent velocity field. Displayed are the results computed by the CIP–CSL3UNO
scheme with different CFL numbers (0.2, 1.1, and 2.2) att = 0.22 (a),t = 0.44 (b), t = 0.66 (c), andt = 0.88
(d).
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5. SUMMARY

A class of semi-Lagrangian schemes based on constrained cubic polynomial has been pre-
sented. Two constraints were imposed during the construction of the interpolation function.
The conservation of the cell-integrated average of the interpolation function was included
as a constrained condition to enforce the conservation of the semi-Lagrangian solution.
As another constraint, the first-order derivative of the interpolation function at each cell
center was introduced to allow the use of manipulations, such as slope limiters, to get
oscillationless solutions.

This formulation provides many choices for determining the cell-center slopedi−1/2, and
allows further investigations. Using the UNO and Collela and Woodward’s reconstructions,
we obtained completely conservative and oscillationless solutions to linear transportation
problems. The conservative constraint guarantees the correct shock positions when applied
to nonlinear applications, while the monotonicity of a nonlinear solution requires some extra
modifications on the numerical flux involved in the cell-integrated average calculation.

The CIP (constrained interpolation profile) concept provides a general methodology for
constructing interpolation function. Although this work focuses on the transportation equa-
tion, formulations that involve other physical processes should be worthy of investigatation
as well.
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