Journal of Computational Physi&§0,498-522 (2001)

®
doi:10.1006/jcph.2001.6746, available online at http://www.idealibrary.col DE &l.

Completely Conservative and Oscillationless
Semi-Lagrangian Schemes for
Advection Transportation

Feng Xiad"{ and Takashi Yabe

*Department of Energy Sciences, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama,
226-8502 JapantDepartment of Mechanical Engineering and Science, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552 Japan;i#&nantier Research System for Global
Change, SEAVANS North, 1-2-1 Shibaura Minato-ku, Tokyo, 105-6791 Japan
E-mail: xiao@es.titech.ac.jp, yabe@mech.titech.ac.jp

Received February 21, 2000; revised September 5, 2000

In this paper, we present a new type of semi-Lagrangian scheme for advection
transportation equation. The interpolation functionis based on a cubic polynomial and
is constructed under the constraints of conservation of cell-integrated average and the
slope modification. The cell-integrated average is defined via the spatial integration
of the interpolation function over a single grid cell and is advanced using a flux form.
Nonoscillatory interpolation is constructed by choosing proper approximation to the
cell-center values of the first derivative of the interpolation function, which appears
to be a free parameter in the present formulation. The resulting scheme is exactly
conservative regarding the cell average of the advected quantity and does not produce
any spurious oscillation. Oscillationless solutions to linear transportation problems
were obtained. Incorporated with an entropy-enforcing numerical flux, the presented
schemes can accurately compute shocks and sonic rarefaction waves when applied
to nonlinear problems. © 2001 Academic Press

Key Words:atmospheric modeling; computational algorithm; semi-Lagrangian
scheme; linear and nonlinear transportation equations; mass conservation; shock
wave.

1. INTRODUCTION

Semi-Lagrangian schemes, as indicated by the terminology, describe fluid evolut
based on a reference frame moving with an individual parcel of fluid like a fully Lagrangic
method but make use of an Eulerian computational grid and choose the set of the parce
every time step so that all the fluid parcels arrive at each grid point of the regularly spa
Eulerian mesh at the next time step. As an efficient and accurate approach to compt
the advection process, semi-Lagrangian schemes have been extensively studied and w
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incorporated into numerical models for atmospheric flows during the past decades. Sur
of such a topic were given by Staniforth andt€[25] and Smolarkiewicz and Pudykiewicz
[24].

A semi-Lagrangian scheme in a one-dimensional flow field involves the numerical n
nipulations to solve the following differential equations for any physical varidilie t),

df

at G(x,t) (1)
and

dx

at - u(x, t), (2

wheret refers to the timex is the spatial coordinate, is the flow speed, an@ refers to
the source terms. Here, the total derivative is defined as

—+u—. 3)

A semi-Lagrangian method usually makes use of the solution as a Lagrangian invariai
any instant,

f(x,t) = f(X,t — At), 4)

whereX denotes the departure point of a trajectory that originatés-ait and arrives at

x after At. As mentioned above, the end poinis chosen to coincide with a grid point, but
the departure poirt is not in general a grid point. Thus, the following three tasks alway
need to be done for any semi-Lagrangian scheme: (1) approximate the trajectory for all
parcels which arrive at grid points, (2) construct the interpolation functiofi fert — At)
over the cell that covers the departure point of the trajectory, and (3) estimate the so
termsG along the trajectory during the time integration from At tot.

As discussed in [5], the back trajectory can be calculated with a second-order accul
using a Runge—Kutta type scheme. The estimation of the source or forcingdehmsever,
is a topic that is closely related to the physical problem to be solved, and some w
established methods, such as the trapezoidal method and the second-order Adams—Bas
method, exist for practical applications. The construction of the interpolation for physic
variable f (x, t) remains the most active field for investigation since the first appearance
the semi-Lagrangian schemes and still attracts the interest of researchers. So far empha:
been given to the numerical properties, such as accuracy [9, 15, 22, 33, 34], monoton
[2, 30, 31, 32], and locality [31, 33, 34].

Unlike most Eulerian methods, which are derived by using control volume or ce
integrated average, the Lagrangian invariant solution used in a semi-Lagrangian sch
is based only on spatial points and is usually cast in a nonconservation form. Because o
intrinsic difficulties in introducing a conservation formulation in a semi-Lagrangian schen
few studies on the conservation of the semi-Lagrangian schemes have been reported
in the literature. A quasiconservative semi-Lagrangian advection scheme is propose
[21] where a semi-Lagrangian scheme is derived by weighting the flux-corrected transj
(FCT) method [3, 37] and a higher order interpolation. The weight is iteratively determin
so that the conservation of the total amount of the advected quantity is enforced. As
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conservation and the positivity of the advected physical field are important or appear es:
tial in many applications, development of a semi-Lagrangian scheme that guarantees t
properties should be worth further efforts.

A semi-Lagrangian method that conserves exactly the transported physical field
been recently developed in [27, 35] by using the GiBnétrained interpolation profile
concept. The word “CIP” is originally the abbreviation cdibic interpolated propaga-
tion, a numerical scheme proposed by one of the authors for the linear scalar advec
equation [33, 34]. Sinceonstrained interpolation profil@rovides a more general con-
cept that allows a larger variety or a wider spectrum of the numerical techniques to
involved in constructing a semi-Lagrangian scheme, we adopt CIP as a phrase stan
for constrained interpolation profileThe original CIP method falls naturally into this
extended concept of CIP as a subset. The original CIP method (see [33, 34]) is C
structed on the basis of a cubic polynomial function. The first-order spatial derivativ
of the interpolation function are assumed to follow a set of governing equations deriv
by differentiating the advection equation with respect to the spatial coordinates. Thi
derivatives, according to the current interpretation of CIP, give constraints on the inter
lation function. This scheme is completely different from conventional semi-Lagrangi
methods regarding the computation of derivatives. In the latter methods, the gradier
calculated based on the function values at neighboring grid points either by assuming
continuity of the quantity, the first and sometimes the second-order derivatives of the qu
tity at the mesh boundaries [22], or by using approximations based on local grid poi
[30]. By a special treatment of the first derivatives of the interpolation function, the Cl
method achieves a compact form that uses only one mesh cell to construct the interpole
profile.

Interpreting CIP agonstrained interpolation profilanplies that any physically or nu-
merically meaningful treatment can be applied in developing a scheme. Accordingly, |
interpolations forf (x, t) can be constructed under some desired constraints to make f
resulting scheme possess certain qualities. In [27] and [35], a constraint of the conse
tion relation for cell-integrated average is imposed at the stage to determine the piece
interpolation functions. The resulting schemes, namely, CIP-CSL4 (constrained interpt
tion profile—conservative semi-Lagrangian scheme with fourth-order polynomial functic
and CIP-CSL2 (constrained interpolation profile—conservative semi-Lagrangian sche
with second-order polynomial function), conserve exactly the cell-integrated average of
transported field.

Inthis paper, we propose another class of schemes called CIP-CSL3 (constrained inte
lation profile—conservative semi-Lagrangian scheme with third-order polynomial functic
using the CIP concept. The CIP-CSL3 schemes are constructed from a cubic polynor
In addition to the conservation constraint used in the CIP-CSL2 and CIP-CSLA4, the sl
(first-order derivative) of the interpolation function at the middle point of a mesh cell is al
introduced as another constraint on the interpolation function. The slope at the cell cel
can be easily approximated from a reconstruction procedure, and this allows manipulati
i.e., slope limiters, to make the interpolation oscillationless.

In Section 2, the fundamental CIP-CSL3 formulation is described, and some practi
schemes are obtained by choosing different formulas for computing the slope. Numer
results for both the linear scalar advection equation and the Burgers equation are give
Section 3. Implementation with large CFL number is described in Section 4, and the pa
ends with some concluding remarks in Section 5.
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2. THE CIP-CSL3 SCHEMES

The model equation to be considered is a transportation equation in one dimension,

af 9
4+ Zwh=0 5
8t+8x(u) ) (%)

wheret refers to the timex is the spatial coordinate,is the characteristic speed, afds
the transported quantity.

The above equation in fact states a conservation laigf t) and can be recast into an
integral form over any space—time control volumeX + AXx] x [t,t + At] as

X+ AX X+AX
/ f(Xl,t+At)dX1—/ f(xg, t)dxg
X

X

t+At t+At
= —{/ f (X + AX, tHu(x + AX, t)) dt; — / f(x, tHu(x, ty)dty | . (6)
t t

It is convenient to make use of the conservation form of (5) or (6) in constructing
finite-difference or finite-volume method via an Eulerian representation, and the res|
ing numerical formulation is in general automatically conservative. However, in applyi
a semi-Lagrangian calculation, Eq. (5) has to be written in a form as (1)

df ¢ au

dt —  ax’
The only forcing term in this case is the divergence of the velocity field, and the ser
Lagrangian calculation is in general divided into a two-step procedure as

@)

f(x,t) = f(x —UAL, t — Ab) (8)
and
~ ~ au
f(x,t) = f(x,t)—Atf(x,t)a—X. 9)

It is obvious that this solution procedure does not necessarily guarantee the conservati
the advected quantity as stated in (5) and (6). Nevertheless, an alternative way to enfor
the conservation of a scheme in semi-Lagrangian form, can be devised by employing
conservation law as a constraining condition to the interpolation function.

We start from the given datd(xy), f(x2),... f(Xi)... f(xn) with X <xp < --- <
X < --- < XN, Which denote the numerical solution of Eq. (&'}, over the computational
domain an time stepst( = t"), and make use of a piecewise cubic polynomial function, a
in the original CIP method [33].

As with any other semi-Lagrangian schemes, the scheme we will discuss in this paper
bear alarge time step only if one tracks back, according to the trajectory, to the correspon
departure point and constructs the interpolation profile over the mesh cell covering
departure point (see Section 4). For the sake of simplicity and without losing generality,
following discussions will be based on the neighboring cell of the grid point of interest.

Theith piece of the interpolation function is constructed over upwind stencils. Left-bi:
and right-bias components are then written as

Fhx) = f(x) +C5(x — %) 4+ c5(x —x)2 4+ c5(x —x)3, for xe[x_1,%] (10)
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and
FROO = f(x) +cR(x —x) +cRx —x)2+cBx—x)3, for xe[x,x] (11)

We consider a construction over the left-side stencils of grdth x;_; < x < x; and
define the left-side interpolation function as that in (10). It implies the cage>00. From
the continuity ofF- (x) at the two ends of the cell, we have

Frox) = (%) (12)
and
Frxi—) = f"(xi_1). (13)

As in the CIP-CSL2 method, a constraint for the conservation of cell-integrated averag
imposed as

/i ELm)dx=[ﬁ%. (14)

Another constrained condition for the interpolation construction is imposed on the fir
order derivative oF (x), d Rl (x)/dx, at the middle point of the cell,

dR-(x)
T == dini% . (15)

Intermsoff", £, d"; ,,andp , ,, the polynomial (10) can be completely determined
from (12)—(14), and the coefficients read

L_ 6 n _ n_ odn
Gi = AXZ ’Oif% Ax‘i% fi 2di7%’
2

L 6 n 6 n

Cs = X 3f — f — d

2i AX37% 1 + ‘ % ( I—1) AXH% |7%’ (16)
L _ n
G = Ax3 fi"q) — sz - d™ .

-3 -3

WhereAXi,1/2 =X — Xj—1.
Analogously, the coefficients for the right-bias interpolation funcfgh(x) read

R _ 6 n _ 6 n_ n
Ci = & Py T w1 2y
i+3 2
R___6 n 3 n 6 n
G = AXE '0i+% + AxZ (3f |+1) + AX 1 di+%’ a7
i+3 I+2 2
R __ 4 n n 4 n
G = —xc (fi - i+1) N di+1~
i+3 i+3 2

Once the interpolation function is determined, the numerical solutioh @iftime step
n+ 1 is updated as

{Fi'-(xi —uAt), ifu>0,
i (18)

fi =
FR(x —uAt), ifu<0,
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and
3 At

= e Fany U - -

Following [27, 35], the cell-integrated averagés advanced by the conservative relation

P =py — (@ — G-, (20)

whereg; represents the flux gfacross boundany = x; duringt"+! — t" and is computed as

L

g = / [min(0, uyFR(x —u(t —t") + max0, WF-(x —ut —t")]dt. (21)

tn

Assuming that velocityl remains constant during time interddt® — t" = At yields
. 1 1 1
g = —min(0, &) <fi” + Ec{fg + écgfsz + 4c§§3)
_ n } L :_L Lg2 } L¢3
max0, &) | ;" + chif + 3C2i§ + 403i§ ) (22)

whereé = —u; At.

The slope of the interpolation function at the cell ceniy, , remains a free parameter
to be determined. It is this parameter that provides us a way to modify the interpolat
function for suppressing numerical oscillation. To make the resulting scheme more o
we construct] ; , using the cell center valuely),, f3,, -+ fily -

The value of the interpolation function at the cell-central pairt x;_1,» can be found
immediately from (10) as

3

1
firl% = A% . 'Oin—% - Z(fin + f1,). (23)
=3

There are many choices for evaluatitfy, ,. The well-known approximations for first-
order derivatives, such as those proposed in [1], [6], or [10], can be the candidates in s
practical situations. In the present paper, we will define and discuss several CIP-CSL3
schemes by choosing different approximationdftq ,.

2.1. The CIP-CSL3HYMAN Scheme
Using the approximation proposed by Hyman [10], we comnﬂjgz as
—fi”+§ +8fi”+; — 8fi’1% +fs

d_n .= 2 2 2 , (24)
=3 —AXjy1+ TAX + TAX_1 — AX_2

whereAx, = %AXH_l/z + %AXi_l/z.

The resulting scheme is called the CIP-C3H8MAN scheme. The Hyman approx-
imation has fourth-order accuracy for a smooth solution but will cause computationa
spurious oscillation in the presence of a discontinuity or large gradient.

The Hyman approximation is not an oscillation-suppressing formulation. We include it
the present paper to illustrate that the choice of an approximattﬁhltg essentially affects
the interpolation profile and the numerical solution. As with the following two candidat:
for computingd ; ,, an oscillationless solution can be obtained by choosing proper slo
limiters ford® .
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2.2. The CIP-CSL3UNO Scheme

We call a scheme CIP-CSLI3NO if a UNO reconstruction is used to evaluate the
derivatived ; ,.
From [8], a UNO construction fad ; , can be written as
d"

1
=3

= minmod(S",. S ,). (25)

where the minimum modulus function is defined as

. m(a, b), if a andb have same sign
minmoda, b) = . L (26)
0, if a andb have opposite signs
and
a, if ja] <|b|,
m(a, b) ={ i |__| | (27)
b, otherwise.

The piecewise-quadratic reconstruction functions are defined as

STy = fx 1, %1] — Aximinmod(f [x_s, %_1, % 1], f X 1, X113, %.3]) (28)

2

and
S:= f%_z, %_1] — Axi_aminmod( f [x_s, Xz, X 1], T[X_2.%_1, %,1])-
(29)
The first and second Newton-divided differences are defined as
fn, — fn
i+3 i—1
g% = —5c— (30)
and
fn, — fn fn, — "
1 3 1 1 _1
f[Xi_L,Xi+;,Xi+§] _ 1+5 I+3 _ I+3 -3 . (31)
2 2 2 AXip1 + AX; AXit1 AX

The UNO reconstruction procedure selects a line oxern|[ xi] that is bounded by
st T ] (=% y) (32)
and
fiog 4+ 63 % a] (X —x%_1). (33)

The UNO reconstruction [8] has a uniform second-order accuracy and appears less os
tory in the presence of discontinuity.

Instead of the averaging in the UNO reconstruction, essentially nonoscillatory (EN
reconstruction [7] can also be applied by carefully choosing a single piecewise-quadr
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interpolation which should be the one closest to the line which lies between (32) &
(33). Furthermore, more generalized reconstructions using averaging techniques, su
weighted ENO (WENO), can be devised by combining the candidate polynomial interj
lations (see Liugt al.[14] and Jiang and Shu [11]).

2.3. The CIP-CSL3W Scheme

In this scheme we adopt the approximation suggested by Collela and Woodward [4]

min(|sf" ,

2lin, -

L2, — 10, [)son(sf )/Axi—%’

1
2

d"

1
=3

=i, — (1, — ) =0 (34)

0, otherwise

The average sIopEfi”_; is given by
2

AX: 1 2AX 3 + AX 1
st = ' S RELE VTS
-3 AXI_%+AX|_%+AX|+% AXI—% +AXI+% I+§ =3
AXi_; —I—ZAXH_;
—2z 2 (fh, — f" . 35
AXi_% +AX|_% ( I_% I_%)) ( )

This reconstruction, referred to as CW reconstruction hereafter, is a third-order-accu
approximation in smooth regions. As we will show later, the modified slope computed frc
(34) is able to effectively avoid oscillations in the presence of jump discontinuities, but
tends to flatten a peak and create a plateau in the area MJQ{@ changes sign.

2.4. Outline of the Computational Procedure

As discussed in the previous sections, a CIP-CSL3 type scheme can be coded vi
following steps:

e Construct the interpolation function:
0] computed{Ll/2 from { fill/z} using a slope approximation, i.e., any of (24), (25),
(34), or others and
(i) determine the cubic polynomial (10) or (11) intermsfgf ", d" ; ,,andp’ ;,
by (16) or (17).
e Advance the solution:
(i) calculate the semi-Lagrangian solution oby (18),
(i) correct f according to velocity divergence via (19), and
(i) predict the cell-integrated average using the exactly conservative formula-
tion (20).

Before closing this section, we want to remark on a few apparent differences between
methods and other schemes which also use interpolation constructions, such as the MU
scheme [28, 29] and the piecewise parabolic method (PPM) [4]. In these other schem
linear (MUSCL) or a parabolic (PPM) function is used to construct the interpolation functi
which is then used to evaluate the numerical flux with second- or third-order accuracy.
the construction procedures start from the cell-average values. The values of the deper
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variable at cell interfaces are computed from the neighboring cell averages and modi
to enforce the monotonicity. In addition to a slope modification, the modification of tt
values at cell interfaces proves essential to get an oscillationless solution; otherwise
dispersion errors of the numerical solution will be significant. The constructed piecew
interpolation functions are in general not connected across cell interfaces. In our schet
the values at the cell interfaces (the grid points in our terminology) are computed basec
a semi-Lagrangian approach and no modification is involved. Using the semi-Lagrang
solution makes the dispersion errors less and more local. This can be easily understood i
consults the numerical results of the CSL2 scheme (see Section 3) where no modifice
was done to either slope or cell-interface values. In the CSN® and the CSL3CW, only

the slope at the cell center was modified. Thus the pieces of the interpolation functions
connected and make a profile with a smoothness of at @ast

3. NUMERICAL TESTS

The numerical schemes proposed in Section 2 were tested on both linear and nonli
scalar transportation problems. Test problems were chosen to illustrate the numerical p
erties of the presented schemes, such as phase and amplitude errors, mass conser
oscillatory errors across discontinuities, smearing and dispersion of contact discontinuit
capacities of capturing shocks, and expansion fans. We included the CIP-CSL2 [35] sch
as well for comparison.

In all the calculations presented in this paper, an evenly spaced meshwith0.01
and a fixed increment for time integratiadtt = 0.002 are used.

3.1. Linear Scalar Transportation
We consider one-dimensional linear initial problems as

of 0
ot + a—x(uf) =0, (t, x) €0, o0) x (—00, +00) (36)

with different initial conditions

f(x,0) = fox), X € (=00, +00).

3.1.1. Test 1. To examine phase and amplitude errors, a sine function
£O(x) = sin(57 x) (37)

was used as the initial profile. A constant veloaity= 1.0 was set throughout the compu-
tational domain.

As displayed in Fig. 1, all tested schemes recovered the exact solution perfectly exc
the CIP-CSL3CW which flattens the ridge of the wave due to the slope limiter. The PPI
[4] which uses the same slope limiter produces a similar solution with flattened peaks. -
results from the other three schemes are visually identical. Since all schemes have hi
than second-order accuracy, the amplitude of the smooth solution is well preserved. /
type of semi-Lagrangian method, the phase errors are completely eliminated by using
Lagrangian invariant solution of the linear advection equation.
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exact —
csi2

exact —
csl3_hyman

exact —

exact —

csid uno - csl3_cw

N

FIG. 1. A transported sine wave after 1000 step calculations with the CIP-CSL2 scheme (a), the C
CSL3HYMAN scheme (b), the CIP-CSLBNO scheme (c), and the CIP-CSIC3N scheme (d).

Resolution refinement tests were carried out using a sine function with wavelength:
10AX, 20Ax, and 4Q\X.

Following Takacs [26] and Bermejo and Staniforth [2], a measure of the total error ba:
on al, norm is given as

(fin . fiexa052’ (38)

m

I
Zl -
L=

whereN is the total number of grid points.

The numerical errors are given in Table I. We included the results of the PPM as well
comparison. The CIP-CSLAYMAN produces the best solutions for all wavelengths. The
PPM shows an accuracy between CIP-CXU80 and CIP-CSL3CW. The convergence
rates of the schemes were also evaluated and shown in Table Il. The rates for all the te
schemes show a decline in the long-wave regime, where the sine wave is well represe
by the schemes. Especially, CIP-CSL2 and CIP-CHIY3AN show a significantly sat-
urated convergence for the smooth solution of long waves. CIP-C8G has the best
convergence rate for all the wavelengths. The PPM clips the sharp peaks and gives
lowest convergence rate in the short-wave regime.
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TABLE |

Grid Refinement Tests of Different Schemes

Wavelength 1ax 20AX 40AX
CSL2 126 x 1072 144 x 10* 3.46 x 10°®
CSL3 HYMAN 2.73x 1078 3.95x 10°° 2.15x 10°®
CSL3.UNO 102x 10t 9.32x 10 9.42 x 10°°
CSL3CW 297 x 107! 7.51x 1073 2.84 x 107
PPM 187 x 10! 5.37x 1073 1.76 x 1074

Note.A sine wave with different wavelengths was computed. Displayed
are the errors defined b, = 3N (" — £8¥ach2,

3.1.2. Test 2. This problem is the transportation of a square wave. The conditions a
the same as in the previous example except that the initial profile is defined as

o) = {

The computed results of the CIP-CSL2, CIP-C318MAN, CIP-CSL3UNO, and
CIP-CSL3CW att = 2 are plotted in Fig. 2. As expected, without a smoothing constrain
the CSL2 and the CIP-CSLBYMAN methods produced significant spurious undershoot
and overshoots near the large gradients. The profile from the CIP-ESMAN method
looks somewhat similar to that of the CSL2, but it has steeper jumps at the discontinui
because of the use of a higher order interpolation function. Constrained by the oscillati
suppressing reconstructions, i.e., the UNO and the CW reconstructions, CIPA0ED3
and CIP-CSL3CW give well-regulated results. The profiles are effectively bounded. Con
pared with the CIP-CSLRBINO, the CIP-CSL3CW seems to be able to reinforce the initial
sharpness.

Further examinations on the conservation qualities, numerical oscillations, and ove
computational errors of the presented schemes can be carried out with the aid of Table
To compare the performances of the schemes in mass conservation and the nume
oscillation, we calculated the rates of the first and the second moments of the numel
solution atinstaritagainst the initial values defined as REM/ f (t)/ [ f (0) and RSM=
f f2(t)/ f f2(0). The maximum and the minimum of the computed values are inspect
as well.

17
07

x| < 0.15,

. (39)
otherwise

TABLE Il
Convergence Rates of Different Schemes

Wavelength E,(10AX)/E,(20AX)]Y?  [E,,(20AX)/E,,(40AX)]"?
CSL2 9.35 6.45
CSL3 HYMAN 8.31 4.29
CSL3.UNO 10.46 9.95
CSL3CW 6.29 5.14
PPM 5.9 5.52
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= | * % & h
3 csl2 b ", csf3_hyman
oo s - -
I N ¥
[ d
exact —— exact —
csld_uno = ¢sl3_cw

FIG. 2. Same as Fig. 1, but a square wave.

All the tested schemes conserve exactly the first moment. The second moment appe:
have a larger loss with a more diffusive solution. Consistent with what is observed in Fig
the CIP-CSL3UNO and CIP-CSL3CW completely avoid the numerical undershoot anc
overshoot, while the CIP-CSL2 and CIP-CSH3¥MAN do not. The slope limiters used
in UNO or in Collela and Woodward's reconstructions effectively suppress the spuric
oscillation. With the most significant oscillatory errors, the CIP-C$1YAVAN shows the
least diffused solution and appears superior in terms of the total errors. In this particular ¢

TABLE IlI
Numerical Properties of Different Schemes on the Square Wave
Transportation Problem

Scheme RFM RSM MAX min E,
CSL2 10 0.979 1053 —0.053 1758x 1073
CSL3 HYMAN 1.0 0.986 1068 —0.068 1558 x 1073
CSL3UNO 10 0.916 10 0.0 2791x 102
CSL3Cw 10 0.941 10 0.0 2435x 102

Note. MAX and min indicate the highest and the lowest values produced
by the schemes. Other quantities are define@ias= SN (f" — £€xa%2,
RFM = [f(t)/[f(0), and RSM= [ f2(t)/ [ f3(0).
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a b
exact exact
[+ csi3_hyman =
¢ d
exact exact —
csid_uno  » csid ew  x

Bl

FIG. 3. Same as Fig. 1, but a triangular wave.

the CIP-CSL3CW gives a good compromise between smearing the contact discontinu
and eliminating numerical oscillation.

3.1.3. Test 3. The transportation of a triangle wave, initially given as

900 { 1- 2 x| < o..15, (40)
0, otherwise

is computed in this case. The results at 2 are given in Fig. 3 and Table IV. Again, all

schemes conserve the total transported mass. As can be expected, the CIP-CSL2 ar

CIP-CSL3HYMAN produce numerical undershoots but better preserve the sharp pe

while the CIP-CSLUNO and the CIP-CSLEW resultin a somewhat more smeared peak

TABLE IV
Same as Table I, but for the Triangle Wave Transportation Problem

Scheme RFM RSM MAX min E,
CSsL2 10 0.997 Q940 —0.008 1770x 10°°
CSL3HYMAN 1.0 0.999 Q950 —0.007 1278x 10°°
CSL3.UNO 10 0.984 Q912 Qo 5.792x 1075

CSL3CW 10 0.987 Q869 Qo 9.844x 10°°
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TABLE V
Transportation of a Square Wave with a Variable Velocity Field

Scheme RFM RSM MAX min E,
CSL2 10 0.572 0825 —0.054 1672x 1073
CSL3HYMAN 1.0 0.578 Q857 —0.065 1614x 10°3
CSL3.UNO 10 0.532 Q759 Qo 2568x 102
CSL3CW 10 0.544 Q781 Qo 2413x 102

It is also observed that the CIP-CSIC3V scheme causes the worst clip to the triangula
peak, because the CW reconstruction tends to enforce the jump transition between
plateaus and a sharp corner is then always subjected to being flattened.

3.1.4. Test 4. A variable velocity field

1

U = 15 05 sin@mo)

was used to test the conservations of the numerical schemes with a non-divergence
velocity. A square wave
o 1, 01<x<013
o) = .
0, otherwise

is transported through the computational domain ungl 1.7. As shown in [23], an ana-
lytical solution to this problem can be found by solvi% = % along the characteristic
curves. From Table V, we found that the total mass was exactly conserved even with
drastically changed velocity field. The CIP-CSUBO and CIP-CSL3CW give positive
solutions. Also in Fig. 4, the solutions from CIP-CSUNO and CIP-CSL3CW appear
much less oscillatory, although new extrema are physically permitted in this case bec:
of the variable velocity. CIP-CSLBIYMAN has the smalledt, errors but gives the most
oscillatory solution.

3.2. Burgers’ Equation

As discussed by Bermejo and Staniforth [2], because a conventional semi-Lagran
scheme is a kind of method of characteristics, it fails in recognizing uniquely the charac
istic curves which pass through a shock. A shock-fitting technique was then suggeste
isolate the shock from the smooth region where a unique characteristic curve is attaine
However, a shock-fitting method proves to be difficult to apply to more complicated
multidimensional physical problems [19, 21].

It is currently well accepted that, instead of fitting a shock, capturing a shock usi
a conservative scheme is a more practical approach, since a local conservation, whi
automatically satisfied if a piecewise flux form is used, guarantees the right shock placen
[12].

We will show with the inviscid Burgers equation that the presented schemes, in spite
being of semi-Lagrangian type, are capable of correctly capturing shocks with the con
vative constraint.
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FIG. 4. Transportation of an initial square wave with a variable velocity field. Displayed are the results aft
2000 step calculations with the CIP-CSL2 scheme (a), the CIP-GSIMAN scheme (b), the CIP-CSLBNO

scheme (c), and the CIP-CSIGN scheme (d).

As a nonlinear transportation problem, the Burgers equation allows solutions such as
shock and the expansion fan. Being developed for a scalar conservation law, the prese
schemes can be straightforwardly applied to the Burgers equation. We consider the invi

Burgers equation

au  JdH(u) _o, (41)

ot aX

whereH (u) = %uz is the flux function.
To implement a semi-Lagrangian calculation, its advection form can be written as

Ju ou
a ) (42)
ot X

There are many ways to determine the characteristic sp@ed Since semi-Lagrangian
methods are based on a quasilinear solution procedure, accurately estimating the adve
speed and the trajectory is not easy in a nonlinear case. In the present study, the adve
velocity is defined aa(u) = dH (u)/9u. We use the values afat cell centers to approxi-
mated H (u)/du. From (23), interpolation function readily provides the middle-point values
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Using a central difference, we have

H(u
(@H(u)/ou)i = (43)

Instead of using a two-step procedure, such as (8) and (9), the divergence correcti
absorbed into the advection phase arid solved by

u™(x, t) = u"(x — a(UM AL, t — At). (44)

After u"! is obtained, a flux modification similar to that suggested in [20] is adopted .

L mingricyew gW)i, ifu 1 >u_:
gl — { i =u= . |+2 1 2 (45)
5 MaXmizysu g(W)i,  if U1 <Uz,
where
H n 1 R 1 R 2 1 R 3
g(u); = —min[0, (ub)] | f" + EC” (ut) + §Czi (ut)s + ZCS‘ (ut)
1 1 1
—max[0, (ut)] [fi“ + Eclﬁ (ut) + §CzLi (ut)? + Zcéi (ut)ﬂ ) (46)

Using (45), the cell-integrated averag®&™ is predicted from (20).

Remark. In a conventional high-resolution scheme, subgrid resolution is obtain
through a reconstruction using cell-averaged values. The physical variable and the
merical flux are allowed to be discontinuous across a cell boundary, usually denatgd by
andugr. Hence any such constructed scheme appears to be able to readily use the num
flux to get an entropy-consistent solution as discussed in [20]. The methods presente
this paper, however, have continuous reconstruction profiles at cell boundaries. Thus,
numerically entropy-consistent flux that is based on a Riemann problem cannot be dire
implemented in our cases. Alternatively, since the dependent variableomputed sep-
arately from the cell-integrated averagewe are provided with a possibility to evaluate
the numerical flux by using the values of the dependent variaatéwo different instants.
Recalling thatu is advanced via a Lagrangian invariant solution according to the charact
istics, it is easy to understand that (45) functions equivalently as the formula discusse
[20].

3.2.1. Test5. We repeated the sample problem calculated in [2, 21]. The initial profil

is
u(x) = % + %sin(nx). (47)

Theresults at = 1.5 from all presented schemes are plotted in Fig.5. 1.5 is an instant
far beyond the time required for the initially smooth profile to develop into a discontinuo
shock. We found that all the schemes reproduced the correct shock position. Solutions |
all schemes look quite similar except that some minor oscillations are observed bel
the shocks from the CSLBIYMAN scheme. We may attribute this to the interpolation
function used in the reconstruction. The other two with UNO and CW reconstructions g
oscillationless solutions.
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-1 -0.5 0 0.5 1

FIG. 5. Shock solution of Burger’s equation = 1.5 from an initial sine wave (47). The arrows indicate
the accurate shock position. Displayed are the results computed by the CIPHXY3UAN scheme (a), the
CIP-CSL3UNO scheme (b), and the CIP-CSIC3N scheme (c).

3.2.2. Test 6. This example was used in [36] to test numerical schemes with shocks a
sonic rarefaction wave. The initial profile is specified as a parabolic profile,

max[0, (x — 2.5 (1.5—x)], x—25=>0,

48
—u9(x — 2.5), X—25<0. “8)

ul(x — 2.5) = {

The profile will create a left-moving shock and a right-moving shock, and an expansi
region will develop between them. Figure 6 shows the outputs=af andt = 12. The
numerical flux defined in (45) and (46) works extremely well with the shocks and the sol
rarefaction wave. Some ripples in the solution of CSH8MAN immediately after the
formation of the shockt(= 2) are observed, whereas CSUNO and CSL3CW give
excellent results.
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FIG. 6. Solution of the Burgers equation from an initial parabolic profile (48). Displayed are the resul
computed by the CIP-CSLBYMAN scheme (a), the CIP-CSLBNO scheme (b), and the CIP-CSIC3V

scheme (c).

3.2.3. Test 7. A more complicated initial condition (the same as that used in [36]) i

specified as

1.0,
—0.5,
-10,
0.0,

ul(x) =

20> x> 0.2,
3.0> x> 2.0,
48 > x > 3.0,
otherwise

(49)
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A right-moving shock and a left-moving shock are initially located at 2 andx = 3,
respectively. Two expansion discontinuities are located-at0.2 andx = 4.8. The exact
piecewise solution is

0.0, —00 < X < 0.2,
x—=02)/t, 02<x<t+0.2
1.0, t+02 < x <2+0.25,

ux,t) = ¢ —0.5, 2+025 <x <3-0.75t, (50)
-1.0, <3—-0.75 < x <48 —t,
x—4.8)/t, 48—t <x <48,
0.0, 48 < X < 400

fort < 1.0and

0.0, —00 < X < 0.2,
x—=02)/t, 02<x<t+0.2
1.0, t+02 <X <2+0.25,

UxB=19_10, <3-075% <x <48—t, (1)
x—4.8)/t, 48—t <x <48,
0.0, 48 < X < 400

fort > 1.0.

The two shocks moving in opposite directions collide at 1.0 and a stagnant shock
forms. The two expansion fans expand at faster speeds after the respective shocks.

Figure 7 shows the computed results of the three CSL3-type schemes before the colli
(t = 0.75). The correct positions of the two shocks are obtained. The expansion waves
also accurately computed. The CIP-CSH¥MAN produces significant overshoots and
undershoots near the shocks as can be expected. CIP=@IS03nd CIP-CSLXW give
little to be distinguished from each other and produce exceptionally good results. M
detailed observations can be obtained from Table VI. All schemes again demonstrate
exact conservation of the first moment. A small amount of overshoot (less than 0.6%
observed just behind the right-moving shock wave for CIP-CBNO and CIP-CSL3W
and is less than that of CIP-CSIEBYMAN by at least one order. No undershoot is found for
CIP-CSL3UNO and CIP-CSL3XW. The CIP-CSL23HYMAN appears more oscillatory
but has less; error.

Calculations were continued until= 2.0. The two moving shocks had collided and a
single stagnant shock established. Again all the schemes compute correctly the shock
the expansion fans as displayed in Fig. 8.

TABLE VI
Numerical Properties of Different Schemes Applied
to the Burgers Equation (Test 7 att = 0.75)

Scheme RFM RSM  MAX min E,

CSL3HYMAN 1.0 0895 1083 -—1.053 1207x 1073
CSL3UNO 10 0895 1006 —1.0 1765x 1073
CSL3CW 10 0895 1005 -1.0 1759x 1073

Note.The displayed quantities are the same as those in Table I.
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FIG. 7. Solution of the Burgers equation fit= 0.75 with an initial condition defined by (49). Displayed

are the results computed by the CIP-CSH¥MAN scheme (a), the CIP-CSLBNO scheme (b), and the
CIP-CSL3CW scheme (c).

4. IMPLEMENTATION WITH LARGE CFL NUMBER

Since the presented schemes are substantially of semi-Lagrangian type, extendin
schemestothe large CFL number case is straightforward. As with any other semi-Lagran
method, the departure points need to be determined as the first step. Accurately estim
the departure point proves important especially when a large time increment is used
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FIG. 8. Same as Fig. 7, but at= 2.0.

integration. For a problem where velocities change with time, an iteration procedure
usually involved to determine the departure position [16, 17], and this leads to high co
putational overhead. In the following calculations, using a velocity that remains conste
we evaluate the departure point by a Taylor expansion up to fourth order in the space [

1 ou 1 0 ou
i)=X — UAt + —At?u— — At3u— (u— O(AtY. 52
xp@i) =% —u t5 uzs — AU <u8x>+ (At (52)
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The departure pointp(i ) may be located at a distance of more than one grid spacing aw
from the arrival pointx; in case of large CFL number. Suppogg(i ) falls in between grid
pointsip(i) andip(i) — 1 for xp(i) < x;, or betweerip(i) andip(i) + 1 for xp(i) > X;.
Then the interpolation construction presented in Section 2 can be used by replatting
ip(i). The advected quantity is then advanced by

¢ {Fig(i)(xp(i) — Xip)), if Xp() < X, 53
Fibi) (XP() — Xipi),  if xp() > xi,
and
TN\ XP).Xi
frt = fi — fi At(?i) : (54)

whereF”'-)(i) and Fiﬁ(i) represent the interpolation functions over celfg{) — 1, ip(i)] and
[ip(),ip(i) + 1], respectively. The notation )™ stands for the averaging along the

trajectoryxp(i), Xi. A simple formulation can be written as

T\ XP3),Xi
(3U> _ 1 Uipa—Uig 1 Uipi)+1 — Uipi)-1
X 2 AXi—12+ AXij12 2 AXipiy-1/2 + AXipiy+1/2

(55)

As discussed in a previous paper [35], the cell-integrated averagecan be advanced
by mapping the corresponding quantity in the region betwg®n) andxp(i — 1) as

ip()
Pinjll/z = Gipi-1 + Z {172 = Yipa)- (56)
j=ip(i—D+1

We should note that the semi-Lagrangian feature of our schemes removes the restri
on the time step resulting from the computational stability; however, a large CFL num|
tends to cause significant numerical errors when velocity violently changes. Furtherm
a criteria for stability in terms of Lipschitz number as discussed in [13, 24] applies to t
schemes presented.

The schemes were tested with the following linear transportation problem with a stron
divergent wind defined by

u(x) = —1.0sign[sin2m x)] (| sin(2 x)|)*/2. (57)

The velocity, as shown in Fig. 9, has the largest divergence associated with a s
gradient around the domain centar=£ 1). The transported quantity will thus spread out
from the central area and concentrate at the two ends.

The schemes were used with different CFL numbers. The oscillation-suppress
schemes, CIP-CSLBNO and CIP-CSL3W, give quite similar solutions without any
undershoot. The solutions computed by the CIP-CBNO with the CFL numbers .Q,
1.1, and 22, respectively, are displayed in Fig. 10. Again the conservation of the total int
grated cell average is retained in all the cases. The scheme is stable even with a CFL nu
up to 22 for this sample problem. The numerical results of large CFL computations app
not much different from those of small time step.
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FIG. 9. Atest problem with strongly divergent velocity field. Displayed are the velocity defined by Eq. (57
and the initial distribution of the advected quantity.
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FIG. 10. Advection on a divergent velocity field. Displayed are the results computed by the CIPAQI$03
scheme with different CFL numbers (0.2, 1.1, and 2.2)4at0.22 (a),t = 0.44 (b),t = 0.66 (c), andt = 0.88

(d).
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5. SUMMARY

Aclass of semi-Lagrangian schemes based on constrained cubic polynomial has beer
sented. Two constraints were imposed during the construction of the interpolation funct
The conservation of the cell-integrated average of the interpolation function was inclu
as a constrained condition to enforce the conservation of the semi-Lagrangian solut
As another constraint, the first-order derivative of the interpolation function at each ¢
center was introduced to allow the use of manipulations, such as slope limiters, to
oscillationless solutions.

This formulation provides many choices for determining the cell-center slopg, and
allows further investigations. Using the UNO and Collela and Woodward’s reconstructio
we obtained completely conservative and oscillationless solutions to linear transporta
problems. The conservative constraint guarantees the correct shock positions when ap
to nonlinear applications, while the monotonicity of a nonlinear solution requires some ex
modifications on the numerical flux involved in the cell-integrated average calculation.

The CIP ¢onstrained interpolation profi)econcept provides a general methodology for
constructing interpolation function. Although this work focuses on the transportation eq
tion, formulations that involve other physical processes should be worthy of investigatat
as well.
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